
Abstract

Design and Implementation of Self Learning

Autonomous Robot using Neural Networks

under ROS (Robot Operating System) Platform

Salam Al-Khammasi, Adnan Qayym, Prof. Tarek Sobh

Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT

06604, USA, (salkhamm, aqayyum)@mybridgeport.edu, sobh@Bridgeport.edu

In this poster, we are designed and implemented

an avoidance obstacle robot by using ROS (Robot

operating system) as main platform. Neural Network

algorithm has been used to program the robot. The

algorithm has been written in Python programming

language. In the hardware part, Arduino Uno Board with

Ultra sonic sensor have been used to to detect the

obstacles. Our contribution will be how to make the

Robot detects the obstacle using neural network by

learning himself from the environment and save that

data which is getting by the ultra-sonic sensor to the

base station so when it comes back to the same

environment, the robot will not need to do the same

procedure because the data already saved to the Base

Station. All the related variables like Velocity,

Acceleration and distance, etc. will get from ROS

platform. The ROS will minimize the coding and gives

us relative results. The communication between the

robot and the base station will be wireless.

Conclusion
In conclusion, our team came up with a new modern

robot to avoid the obstacles avoidance by using the

new robotic platform (ROS) and our team enhances

the time consumption to program the robot itself. In

addition, our contribution will be how the robot will

learn the environment with the neural network

algorithm. Also, in this project, we reduced the time

consumption for the programmer.

Introduction

Some slide content is adapted from the ROS.org Wiki

under the Creative Commons Attribution 3.0 license.

Also, some of the figure is adapted from the Lincoln
laboratory at MIT http://ll.mit.edu

ROS (Robot Operating System) is the most modern

framework which is used to improve the software

programming in the robotics field.

ROS has been involved to enhance and develop the

robotics in many fields. For instance, industrial robots,

biomedical robots, underwater robots, space robots,

military robots, etc... ROS is open source software

supported on Linux and can support many different

programing languages like C++ and Python.

In our project, we have used the latest version which is

released in July 2014, named as “Indigo Igloo”.

ROS simplified the function of creating complex robot

behavior by using many built in tools and libraries. It’s

growing up very fast among different Robotics platforms.

As a result of using ROS, our team has reduced the

consuming time of the programming to the half. In this

project, our team has designed and implemented an

obstacle avoidance autonomous robot by using neural

network techniques by using Python programming

language under ROS framework.

In this work we have used offline path planning. I.e. the

path planning can be done before the robot starts to

move. We implemented the proposed algorithm in

python language under ROS framework. ROS have

many built in packages for robotics that reduce our

consumption time of programming to half. We used the

simple neural network technique, i.e. ‘Learning your

environment’ means robot will collect the data (offline)

from its environment and saved it for the situation when

robot counters the same situation again.

We have implemented the algorithm that the

robot learns internal model of the environment by

recurrent neural network, it predicts succession of

sensors inputs and on the base of the model it

generates navigation steps as a motor commands.

Robot will collect the data from its environment and

saved all the instances of collected data for the

situation if it ever comes again. Therefore we use the

sensor data from the environment and the classical find

object problem in our strategy was transform to the

procedure ‘learning your environment’. The robot has in

any position in workspace information about its

distances to the all objects in this workspace. We use

this information in neural network that learns these

situations and in any position gives the free segment of

space for safe and fastest path as output.

Our motion planning algorithm can be summarized as

follows:

Goals of Using ROS :

Hardware Implementation
For the hardware part, as shown in the figure 3 the robot

has been built with Arduino UNO board with ultra-sonic sensor.

The ROS will minimize the coding and gives us relative results.

The communication between the robot and the base station will

be wireless.. For distance sensing, SRF-08 ultrasonic sensor

were used. Additionally, the platforms are also equipped with an

Xbee Shield from Maxstream, consisting on a ZigBee

communication module with an antenna attached on top of the

Arduino Uno board as an expansion module. This Xbee Series1

module is powered at 2mW having a range between 40m to

120m, for indoor and outdoor operation. The robot will

communicate with the base station using Wireless Xbee modules

which provide communication via Wireless Wi-Fi 802.11 b/g/. One

Xbee module is attached to the base computer through USB port.

Nodes, Messages, & Topics
•Nodes : processes performing computation in the ROS system

•Vertices in the ROS computational graph

•Created by including and initializing a ROS client library in the

program’s source code
•i.e. roscpp for C++, rospy for Python (also rosjava, roslisp, roslua)

•Each instance must have a unique name (text string)

•Also have a type – filesystem location of the executable

•Messages : packets of data sent between ROS nodes
– Named data structure comprised of strictly typed fields, defined in .msg

files
•Somewhat similar to ‘C’ structs

– Converted to client language data structures during build / compile

• Topics: named unidirectional communication links between ROS

nodes
•Form edges in the ROS computation graph

•Topics are named (text string)

•One or more nodes may publish messages to a topic

•One or more nodes may subscribe to messages on a topic

•Each topic is linked to a single message type

•Created dynamically at runtime by ROS nodes (using the ROS client library)

A simple example:

Inspecting the Computational Graph :
• ROS inspection tools help debug the computational graph

Also useful for understanding how ROS & nodes work

• Command line tools:
rosnode – information on ROS Nodes (publications, subscriptions) rosnode list; rosnode info

/map_server; rosnode ping --all

• rostopic – information on ROS Topics rostopic list; rostopic echo /odom;

rostopic hz /odom; rostopic bw /odom; rostopic pub /chatter std_msgs/String

“hello”

• Graphical user interface - rqt

Proposed Work and Algorithm

Software Architecture

Acknowledgment

Future work

Detects

Obstacle

Learning

environment /

Collect Data

Obstacle

detects,

Recall

situation from

collected data

An example robot application (known-map

navigation):

robotrospy lidarroscpp map rospy

localizationroscpp

plannerroscpp

ROSMaster

Legend

:

rospy

Executing

process

ROS client

library

roscpp

ROScomm.

link

Velocity

Commands

Odometry

Laser

Scans Map

Map

Robot

Position

/talker_b /listener_b

Both the /talker_a and /talker_b nodes

std_msgs::String

Many-to-many example:

Both the /listener_a and /listener_b node

/chatter

/talker_a /listener_

a

std_msgs::String on the /chatter topic type std_msgs::String the /chatter topic

The /talker node publishes messages with type The /listener node subscribes to

messages with

publish messages with type subscribe to messages with type

std_msgs::String on the /chatter topic std_msgs::String the /chatter topic

/talker /listener

/chatter

std_msgs::String

ROS Graph Plugin Topic Introspection Plugin Plot Plugin

http://www.ros.org/wiki/ROS/Introduction

http://www.ros.org/wiki/stage http://playerstage.sourceforge.net/doc/Stage-3.2.1

Figure 1: Robot application sing ROS

Figure 2: The increment in the number of packages and the number

of robots supporting by ROS

Figure 5: Global Planning

Screenshot

• Peer-to-peer

– Heterogeneous networks

and scaling

• Flexible: do not impose

methodology

– Does not wrap “main()”

• Thin

– Encourages development

of ROS-independent libraries

• Tools-based

– Microkernel vs. monolithic

• Multi-lingual

– C++, Python,

Java, Lisp, MATLAB, Lua

• Free and open source

• Scalable

– Small to large runtime systems,

development processes

Figure 3 : Self-Learning autonomous robot with Ultra-Sonic Sensor

Figure 4 : ROS Graph, Topic, and Plot Plugins

• Turn on the robot.

• Initiate and upload the code to it.

• Robot will move fast and slow its

motion once it detects an

obstacle.

• Once it detects the obstacle, it will

collect data through the Ultra-

Sonic Sensor and send it to the

base station to be saved.

• After collecting the data, the robot

training the network (offline).

• The final step will be deploying

and testing the environment.

Figure 6 : 2D Planning

Screenshot

Figure 8: Move_Base Recovery procedure

Figure 7: Motion Planning

Block Diagram

As future work for this project. Any programmers can

apply his own code or algorithm on this robot by just

adding it to the platform like, mapping, navigation,

surveillance and made small modification on the

hardware part .

http://ll.mit.edu/
http://www.ros.org/wiki/ROS/Introduction
http://www.ros.org/wiki/stage
http://playerstage.sourceforge.net/doc/Stage-3.2.1

