Design and Implementation of Self Learning
Autonomous Robot using Neural Networks
under ROS (Robot Operating System) Platform

LANDRATORY

Salam Al-Khammasi, Adnan Qayym, Prof. Tarek Sobh
Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT
06604, USA, (salkhamm, agayyum)@mybridgeport.edu, sobh@Bridgeport.edu

Abstract

In this poster, we are designed and implemented
an avoidance obstacle robot by using ROS (Robot
operating system) as main platform. Neural Network
algorithm has been used to program the robot. The
algorithm has been written in Python programming
language. In the hardware part, Arduino Uno Board with
Ultra sonic sensor have been used to to detect the
obstacles. Our contribution will be how to make the

Robot detects the obstacle using neural network by
learning himself from the environment and save that
data which is getting by the ultra-sonic sensor to the
base station so when it comes back to the same
environment, the robot will not need to do the same
procedure because the data already saved to the Base

Station. All the related variables like Velocity,
Acceleration and distance, etc. will get from ROS
platform. The ROS will minimize the coding and gives
us relative results. The communication between the
robot and the base station will be wireless.

Introduction

ROS (Robot Operating System) is the most modern
framework which is used to improve the software
programming in the robotics field.

ROS has been involved to enhance and develop the
robotics in many fields. For instance, industrial robots,
biomedical robots, underwater robots, space robots,
military robots, etc... ROS is open source software
supported on Linux and can support many different
programing languages like C++ and Python.

In our project, we have used the latest version which is
released in July 2014, named as “Indigo Igloo”.

ROS simplified the function of creating complex robot
behavior by using many built in tools and libraries. It's
growing up very fast among different Robotics platforms.
As a result of using ROS, our team has reduced the
consuming time of the programming to the half. In this
project, our team has designed and implemented an
obstacle avoidance autonomous robot by using neural
network techniques by using Python programming
language under ROS framework.

An example robot application (known-map

navigation):
Legend
OExecuting
process
Velocity
Commands 3)
Map @ ROS client
library
Robot
Positi
ROS Master osttion ROScomm.
—
link

Figure 1: Robot application sing ROS

In this work we have used offline path planning. l.e. the
path planning can be done before the robot starts to
move. We implemented the proposed algorithm in
python language under ROS framework. ROS have
many built in packages for robotics that reduce our
consumption time of programming to half. We used the
simple neural network technique, i.e. ‘Learning your
environment’ means robot will collect the data (offline)
from its environment and saved it for the situation when
robot counters the same situation again.

ROS Packages

3128 Robots officially supporting ROS
28

1643

796
301
5 . 0
11!2.007 11/2008 11/2009 11/2010 n/2om
Figure 2: The increment in the number of packages and the number
of robots supporting by ROS

2010 2011 2012

Hardware Implementation

For the hardware part, as shown in the figure 3 the robot
has been built with Arduino UNO board with ultra-sonic sensor.
The ROS will minimize the coding and gives us relative results.
The communication between the robot and the base station will
be wireless.. For distance sensing, SRF-08 ultrasonic sensor
were used. Additionally, the platforms are also equipped with an
Xbee Shield from Maxstream, consisting on a ZigBee
communication module with an antenna attached on top of the
Arduino Uno board as an expansion module. This Xbee Seriesl
module is powered at 2mW having a range between 40m to
120m, for indoor and outdoor operation. The robot will
communicate with the base station using Wireless Xbee modules

which provide communication via Wireless Wi-Fi 802.11 b/g/. One
Xbee module is attached to the base computer through USB port.

Figure 3 : Self-Learning autonomous robot with Ultra-Sonic Sensor

Software Architecture

Nodes, Messages, & Topics

*Nodes : processes performing computation in the ROS system
*Vertices in the ROS computational graph
*Created by including and initializing a ROS client library in the

program’s source code
*i.e. roscpp for C++, rospy for Python (also rosjava, roslisp, roslua)

*Each instance must have a unique name (text string)
*Also have a type — filesystem location of the executable

Messages : packets of data sent between ROS nodes
— Named data structure comprised of strictly typed fields, defined in .msg

files
*Somewhat similar to ‘C’ structs

— Converted to client language data structures during build / compile
» Topics: named unidirectional communication links between ROS

nodes

*Form edges in the ROS computation graph

*Topics are named (text string)

*One or more nodes may publish _messages to a topic

*One or more nodes may subscribe to messages on a topic

*Each topic is linked to a single message type

*Created dynamically at runtime by ROS nodes (using the ROS client library)
L)
y

A simple example:

The /talker node publishes messages with type The /listener node subscribes to
messages with

/chatter

std msgs::String
———

std_msgs::String on the /chatter topic type std_msgs::String the /chatter topic

¥ H

Both the /listener_a and /listener_b node
subscribe to messages with type

std_msgs::String the /chatter topic

Many-to-many example:

== /chatter

std msgs::String

Both the /talker_a and /talker_b nodes
publish messages with type
std_msgs::String on the /chatter topic

Inspecting the Computational Graph :

* ROS inspection tools help debug the computational graph
Also useful for understanding how ROS & nodes work
 Command line tools:

rosnode — information on ROS Nodes (publications, subscriptions) rosnode list; rosnode info
/map_server; rosnode ping --all

* rostopic — information on ROS Topics rostopic list; rostopic echo /odom;
rostopic hz /odom; rostopic bw /odom; rostopic pub /chatter std_msgs/String
“hello”

« Graphical user interface - rqt

Proposed Work and Algorithm

We have implemented the algorithm that the
robot learns internal model of the environment by
recurrent neural network, it predicts succession of
sensors inputs and on the base of the model it
generates navigation steps as a motor commands.
Robot will collect the data from its environment and
saved all the instances of collected data for the
situation if it ever comes again. Therefore we use the
sensor data from the environment and the classical find
object problem in our strategy was transform to the
procedure ‘learning your environment’. The robot has in
any position in workspace information about its
distances to the all objects in this workspace. We use
this information in neural network that learns these
situations and in any position gives the free segment of
space for safe and fastest path as output.

File View Run Help

R B A
] A

N

- n ®w & o o |

R I N

4m 18s 200msec [9.6] [PAUSED]

L

Figure 6 : 2D Planning

Figure 5: Global Planning
Screenshot

Screenshot

Our motion planning algorithm can be summarized as
follows:

e Turn on the robot.

« Initiate and upload the code to it.

 Robot will move fast and slow its
motion once it detects an

Detects
Obstacle

Obstacle
obstacle. e
* Once it detects the obstacle, it will Recall

situation from
collected data

collect data through the Ultra-
Sonic Sensor and send it to the
base station to be saved.

« After collecting the data, the robot
training the network (offline).

« The final step will be deploying
and testing the environment.

Learning
environment /
Collect Data

Figure 7: Motion Planning
Block Diagram

stuck

Conservative
Reset

Clearing
Rotation

Aggressive
Reset

Clearing
Rotation

clear

Figure 8: Move_Base Recovery procedure

Conclusion

In conclusion, our team came up with a new modern
robot to avoid the obstacles avoidance by using the
new robotic platform (ROS) and our team enhances
the time consumption to program the robot itself. In
addition, our contribution will be how the robot will
learn the environment with the neural network
algorithm. Also, in this project, we reduced the time
consumption for the programmer.

Future work

As future work for this project. Any programmers can
apply his own code or algorithm on this robot by just
adding it to the platform like, mapping, navigation,
surveillance and made small modification on the
hardware part .

Goals of Using ROS ROS Graph Plugin Topic Introspection Plugin Plot Plugin
* Peer-to-peer - Tools-based = hoo s v
— Heterogeneous networks — Microkernel vs. monolithic v el T . A C k no WI ed g men t
and scaling « Multi-lingual e T 8 s . . .
 Elexible: do not impose _ C++, Python BT T T : Some slide content is adapted from the ROS.org Wiki

) ! ! data strin "hello world 1598' B gy
methodology Java, Lisp, MATLAB, Lua @ Chatter @ i ;g;g;g;g::;;ggﬁgg e N\ /AN under the Creative Commons Attribution 3.0 license.
—Dhoes not wrap “main()” * Free and open source F Also, some of the figure is adapted from the Lincoln
* Thin « Scalable L4 \ |

_ -r aboratory at MIT

— Encourages development — Small to large runtime systems, . y

of ROS-independent libraries development processes

Figure 4 : ROS Graph, Topic, and Plot Plugins

http://ll.mit.edu/
http://www.ros.org/wiki/ROS/Introduction
http://www.ros.org/wiki/stage
http://playerstage.sourceforge.net/doc/Stage-3.2.1

